
Introduction

Non-isothermal methods such as differential thermal
analysis (DTA), thermogravimetry (TG), differential
scanning calorimetry (DSC) etc., have been widely
used to study the kinetics and mechanism of variety of
reactions [1–4]. These methods usually involve in the
integral

I m T T E RT T( , ) exp(– / )= ∫ m

0

T

d (1)

where E is energy, R is universal gas constant, T is ab-
solute temperature, and the exponent m arises from the
temperature dependence of the pre-exponential factor
[5, 6]. The case m= –1/2 occurs in the Langmuir evapo-
ration theory [7, 8]. The case m=0 occurs in Arrhenuis
theory [9]. And the cases m=1/2 and 1 occur in the col-
lision theory [10] and transition state theory [11], re-
spectively. However, this integral cannot be solved in a
closed form. Miscellaneous approximations [12–15],
with varying complexity and precision, have been pro-
posed for the evaluation of the integral for the special
case of m=0. Recently Singh et al. [16] developed a
technique based on the complementary incomplete
gamma function for evaluation of the integral for arbi-
trary values of the temperature exponent m.

In the past few years, calculation of the kinetic
parameters from non-isothermal data has been sub-
jects of considerable interests [17, 18]. Thus, it is very
important to suggest a reasonable approach by which
kinetic parameters can be evaluated from the data of
non-isothermal experiments both accurately and con-
veniently [19, 20]. Kinetic parameters are usually
evaluated iteratively by linear or non-linear regres-
sion. It has been demonstrated that the technique de-
veloped by Singh et al. [16] leads to almost accurate
results. But the evaluation of the complementary in-
complete gamma function, which is necessary to ob-
tain the integral, is complex and takes much comput-
ing time. So an approximation method, which can be
easily programmed and carried out in a personal com-
puter with accurate enough results, will be welcome
[21]. The aim of this paper is to present new integral
approximate formulae for evaluation of the integral
for arbitrary values of the temperature exponent m.
Comparing the results with those determined with nu-
merical integration validates both methods. Further-
more, both new methods are simple, easily applied,
and can be used over a wide range of values of E/RT.
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In this paper two approximate formulae have been developed for calculation of the integral T E RT Tm
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d∫ exp(– / ) by using integra-
tion-by-parts approaches. They are in the following forms:
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The validity of the two formulae has been confirmed and their accuracies have been tested with data from numerical calculat-
ing. In contrast to existing other integral methods, both the present approaches are simply used, accurate, and can be used for arbi-
trary values of m.
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Theory

With the substitution u=E/RT, Eq. (1) can be expressed
[16] as
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The integral in the right-hand side of Eq. (2) has
no exact analytical solution, but can be integrated by
parts [22] to obtain the expression shown below:
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Rearrangement of Eq. (3) gives to Eq. (4)
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Since (m+2)RT/E is much less than unity at mod-
erate temperatures T and high energies E, the value of
1+(m+2)/u is in the neighborhood of unity. Therefore,
1+(m+2)/u is assumed constant and removed out of
the integral symbol to give Eq. (5).
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Equation (5) is then rearranged to give Eq. (6)

exp(– ) exp(– )u

u
u

u

u
m

u

m 2
u m 2

d
+

∞

+
∫ =

+ +⎛
⎝
⎜ ⎞

⎠
⎟1 2

(6)

That is
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Equation (7) can be reverted to Gorbachev–Lee–
Beck equation [23, 24] for m=0.

In order to improve the preciseness of the ap-
proximation further, we divide both sides of Eq. (4)

by [exp(– ) / ]u u u
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Rearranging Eq. (8), we get
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In a recently published literature [25], we re-
ported that the expression of k(m,u) can be put into
the following form in the case of m=0.

k(0,u)=0.00099441+0.93695599/u (11)

The results of our calculations lead us to propose
that the expression of k(m,u) can be also put into the
same form as Eq. (11) for arbitrary values of m. Intro-
ducing the expression of k(m,u) into Eq. (10), the fol-
lowing approximation of the integral
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Equation (13) gives the higher accuracy, where-
as Eq. (7) seems simpler. The form of Eq. (13) is the
same as that presented in [25] but the exponent m.
And the integral equation in [25] can be obtained
from Eq. (13) for m=0, too.

Evaluation of accuracy of the approximate
formulae

The aim of this analysis is to assess the precision of the
two present methods for commonly used m in their
range of applicability in kinetic studies. All numerical
values are computed and plotted on a Pentium IV PC by
programming MATLAB 6.5. The values of

[exp(– ) / ]u u um 2

u

d+
∞

∫ for m= –1, 0, 1 and 2 for Eqs (6)

and (12) are evaluated in a physically realistic range of
u. Their deviation from the Simpson’s procedure of the
integral for different values of m is shown in Figs 1
and 2, respectively. It can be clear seen that the values
from both recommended methods be in excellent accor-
dance. Both the present approximate formulae give ac-
curate results and works well for both zero and non-zero
values of m with a wide range of application. And
Eq. (13) gives a more accurate than Eq. (7). It is obvious
that the proposed approximate formulae are more easily
applicable than that developed by Singh et al. [16].
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Conclusions

In the present paper we have developed two approxi-
mate formulae for the evaluation of the integral

T E RT Tm

0

T

dexp(– / ) ,∫ which frequently occurs in

non-isothermal thermal analysis. The present methods
give values of the integral quite close to theoretical val-
ues of the integral for arbitrary values of m in a physi-
cally realistic range of u. The results also confirmed the
plausibility of the used mathematical approach for the
derivation of Eqs (7) and (13). In addition, both the
equations retain simplicity in calculation and formula-
tion. Furthermore, the present methods are reliable and
accurate enough in a wide range of applicability.
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Fig. 1 Percent deviation of the approximation Eq. (6) from
Simpson’s procedure of the integral for different values
of m: � – m= –1, � – m=0, � – m=1 and � – m=2

Fig. 2 Percent deviation of the approximation Eq. (12) from
Simpson’s procedure of the integral for different values
of m: � – m= –1, � – m=0, � – m=1 and � – m=2


